

Supplementary material link									
http://www.phys	sics.uwo.ca/~lgonc	char/courses/p9812/additional							
Username: Password:	P9812 ~vector~								
Lecture 1 1_all.pdf	2_all.pdf	3_all.pdf							
Lecture 2 5.pdf									
Lecture 3 11.pdf	13.pdf								
<u>Lecture 4</u> 6.pdf	7.pdf								
		Lecture 4	2						

Important Terms

- Free electron gas
- Occupation number
- > Fermi energy
- Fermi surface
- Density of states
- ➢ Fermi-Dirac Statistics and Temperature Effects
- Sommerfeld expansion
- > Heat Capacity of the Electron Gas and Sommerfeld parameter

Lecture 4

6

Basic Hamiltonian
Single-electron model:
$H\Psi = \sum_{i=1}^{N} \left(\frac{-\hbar^2 \nabla_i^2}{2m} + U(\vec{r}_i) \right) \Psi(\vec{r}_i \vec{r}_N) = \mathcal{E} \Psi(\vec{r}_i \vec{r}_N)$
N conduction electrons, interacting with external potential U but does not interacting with the other conduction electrons
Find eigenfunctions $\psi_i(\vec{r_i})$ for single electrons obeying:
$\left(\frac{-\hbar^2\nabla^2}{2m} + U(\vec{r})\right)\psi_i(\vec{r}) = \varepsilon_i\psi_i(\vec{r})$
\Rightarrow eigenfunctions describing many particles are products of one-particle functions
Free electron gas: (no external potential U)
$\frac{-\hbar^2}{2m}\sum_{i=1}^N \nabla_i^2 \Psi(\vec{r}_1\vec{r}_N) = \mathcal{E}\Psi(\vec{r}_1\vec{r}_N)$
Lecture 4 7

	El	ements	as free	e elect	tron g	ases	
Element	Ζ	п	k_F	\mathcal{E}_F	T_F	v_F	
		$(10^{22} \mathrm{cm}^{-3})$	$(10^8 {\rm cm}^{-1})$	(eV)	(10^{4}K)	$(10^8 {\rm cm s^{-1}})$	
Li	1	4.60	1.11	4.68	5.43	1.28	
Ag	1	5.86	1.20	5.50	6.38	1.39	
Be	2	24.72	1.94	14.36	16.67	2.25	
Al	3	18.07	1.75	11.66	13.53	2.02	
Sn	4	14.83	1.64	10.22	11.86	1.89	
Sb	5	16.54	1.70	10.99	12.75	1.97	
Mn	4	32.61	2.13	17.28	20.05	2.46	
Fe	2	16.90	1.71	11.15	12.94	1.98	
Co	2	18.18	1.75	11.70	13.58	2.03	
Ni	2	18.26	1.76	11.74	13.62	2.03	

Lecture 4

Metal	Z	γ (mJ	mole ⁻¹ K ⁻²)	Metal	Ζ	γ (mJ mo	$le^{-1} K^{-2}$
		Expt.	Eq. (6.78)			Expt.	Eq. (6.78)
Li	1	1.65	0.74	Al	3	1.35	0.91
Na	1	1.38	1.09	Ga	3	0.60	1.02
ĸ	1	2.08	1.67	In	3	1.66	1.23
Rb	1	2.63	1.90	Sn	4	1.78	1.41
Cs	1	3.97	2.22	Pb	4	2.99	1.50
Cu	1	0.69	0.50	Sb	5	0.12	1.61
Ag	1	0.64	0.64	Bi	5	0.008	1.79
Au	1	0.69	0.64	Mn	2	12.8	1.10
Be	2	0.17	0.5	Fe	2	4.90	1.06
Mg	2	1.6	0.99	UPt ₃		450	
Ca	2	2.73	1.51	UBc ₁₃	5	1100	
Sr	2	3.64	1.79				
Ba	2	2.7	1.92	Heavy termions			

